

Machine Learning Month Neural Networks with Tensorflow

 \bigcirc

Plan for today

- 15:00 15:30 Some Theory
- 15:30 16:00 Some Practical Theory
- 16:00 16:15 Break + QnA about the competition
- 16:15 17:00 Practical

Could this be a dog?

Can a Machine do the same?

Yes!

Science Power Go!

Neural Networks

Welcome to the Third Lecture

Our Objectives:

- Overview of Neural Networks (NNs)
- Why should we use them?
- What are Keras and Tensorflow?
- NN Training
- Practical Session

Overview of Neural Networks

Why Neural Networks?

Why Neural Networks?

Humans are smart! Can we copy them?

When do we use NNs?

- We need high accuracy
- The data does not have an obvious pattern
- We have a LOT of data
- Explainability is not important

What are Neural Networks?

These are a series of algorithms that **attempt** to mimic the human brain

Hidden Laver ∈ R¹

Input Laver ∈ R⁵

Hidden Laver € ℝ¹⁰

Output Laver ∈ R⁵

Formally

 NNs are layers of nodes where each node can be expressed as the result of the previous layer.

 $\sum_{i=1}^{m} w_i x_i + bias = w_1 x_1 + w_2 x_2 + w_3 x_3 + bias$

Weights and Biases

- The contribution of each neuron is known as a weight.
- There is also an offset value in a neuron known as a bias
- Together they determine if the neuron activates

The neuron activates if a threshold of 1 is reached

Fully Connected Neural Networks

 NN in which all nodes in one layer are connected to all nodes in the next layer

Idea

 Each subsequent layer in the Neural Network represents an increase in abstraction

Definitions

 \cap

Activation Functions

These determine whether or not a neuron fires

Examples:

- O Binary
- Linear
- Sigmoid
- ReLu

Binary step

$$f(x) = \begin{cases} 0 & for \ x < 0 \\ 1 & for \ x \ge 0 \end{cases}$$

Linear Activation Function

Linear

f(x) = x

Optimizers

These determine how we update the weights Examples:

- Gradient Descent
- Stochastic Gradient Descent
- Adam
- RMS prop

Optimizers

These determine how we update the weights Examples:

- Gradient Descent
- Stochastic Gradient Descent
- O Adam
- RMS prop

Gradient Descent

Minimizes error by calculating the slope of the loss function

$$W_{new} = W_{old} - \alpha * \frac{\partial(Loss)}{\partial(W_{old})}$$

α = Learning RateW = Neuron WeightLoss = Loss function (MAE, MSE, Accuracy ...)

We need to select a carefully

Additional Pre-processing

 \cap

Scaling

- We should ensure that all data posses the same scale
- Otherwise, variables with greater distance between their values would given higher weightage

Effect of Scaling

Tools

 \bigcirc

 \bigcap

 \bigcap

How will build NNs?

 Tensorflow is an open source python library created by Google

 Algorithms are implemented in C++ for blazing fast performance

TensorFlow

How will build ANNs?

Keras is a high level API for tensorflow

 It is designed to be human readable and simple

Easy to work with

Let's try an example

	A	В	С	D	E	F	G	Н	L	J	К	L
1	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1		0	3 Braund, Mr. C	we male	22		1	A/5 21171	7.25		S
3	2		1	1 Cumings, Mrs	. J female	38		1	PC 17599	71.2833	C85	С
4	3		1	3 Heikkinen, Mi	ss. female	26		0	STON/02. 3101	7.925		S
5	4		1	1 Futrelle, Mrs.	Ja female	35		1	113803	53.1	C123	S
6	5		0	3 Allen, Mr. Will	ian male	35		0	373450	8.05		S
7	6		0	3 Moran, Mr. Ja	me male			0	330877	8.4583		Q
8	7		0	1 McCarthy, Mr	Ti male	54		0	17463	51.8625	E46	S
9	8		0	3 Palsson, Mas	ter, male	2		3	1 349909	21.075		S
10	9		1	3 Johnson, Mrs	. O female	27		0 :	347742	11.1333		S
11	10	1	1	2 Nasser, Mrs.	Nic female	14		1	237736	30.0708		С
12	11		1	3 Sandstrom, M	liss female	4		1	1 PP 9549	16.7	G6	S
13	12		1	1 Bonnell, Miss	E female	58		0	113783	26.55	C103	S

Analysis

В	
Survived	
	0
	1
	1
	1
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0

Analysis

- Our target is binary
- O It does not make sense for a

person to be 0.4 alive

 We need to re-evaluate our methods

9	- N ()	6 (0.0
•	~		
	-	†? ♥	
В			
Survived			0
0			
1			
1			
1			
0			
0			
0			
1			
1			
1			
1			
0			
0			
0			

Logistic Regression

What if we calculated the probability of an item being a value?

If P(alive) > P(dead), then let the person be alive

How do we do it in Keras? <u>Refer to Colab Notebook</u>

Practice Session

 \cap

Let's build an image classifier But How?

How do we represent images?

Images as 2d arrays

Clothing Identification

Dataset - Fashion MNIST

28 * 28 Pixels

Grayscale (0 - 255)

Practical Time Link to Notebook

Reminder!

Deadline: 7th

December

Thank you for your attention!

Do you have any more questions? Join our Discord server

