Recommender System for Games

Elisa Klunder

Aksel Joonas Reedi

Mihkel Mariusz Jezierski

STEAM[®]

/A general overview: the ensemble

ensemble model = weighted average

/Insights about the data

- 1. Game ids and user ids were unnecessarily long and ended up in "Out Of Memory" errors
 - \rightarrow Encoded the ids to be from 0 to n-1
- 2. Appids in game_metadata were **"objects"** while in train they were **ints**
 - → Cast the appids in game_metadata as ints
- 3. Two rows were problematic and prevented encoding/fitting models
 - → Dropped those two rows

/Model 3: Collaborative filtering

- What we did: \rightarrow Matrix Factorization \rightarrow Alternating Least Squares
- **Insights:** \rightarrow The model performed better with a bigger **embedding dimension** (we started with 64 and ended up with 512)
 - → The model overfitted if we let it run for too many epochs (we ended up setting the epochs to 7)
- Open questions: → Was there a way to implement collaborative filtering considering other user information to compute similarity?

/Model 4: Content based on genres

What we did: \rightarrow Used one hot encoded columns relating to genre, category and other information (e.g. is_free)

- Insights: → The model performed better if we included only the information of the "genre" columns, excluding "category" and any other information
 - → The model overshot the likelihood of a user to upvote a game, so putting the **threshold to 0.1** in the transformation from continuous to binary improved the model

Open questions: → The user embedding for every game was done by taking the mean of the "genre" columns, is there a better way? (we tried **TF-IDF encoding** but it didn't seem to make it better)

/Model 5: Content based on game descriptions (BERT)

What we did: \rightarrow Cleaned up text (e.g. HTML formatting)

- → Embedding of "short descriptions", "long descriptions" and "reviews" using BERT tokenizer
 → Fitted a content-based model with the embeddings
- Insights: → Between reviews, short descriptions, long descriptions, and a combination of all three, short descriptions worked the best
 - → **Stemming** was unnecessary because BERT has its own simplification method

Open questions: \rightarrow Is there a smarter way of obtaining embeddings than just taking the **mean** of the elements of the vector?

/Ensamble

What we did: \rightarrow Weighted average of the binary predictions

Insights: \rightarrow Getting the most accurate weights is not trivial:

- using **logistic regression** with a val set didn't work well
- using random search on the weights worked better
- we obtained the best results by fine tuning the parameters by hand

Open questions: → We also tried to make predictions on an ensemble of enable predictions and it obtained the highest score (most probably overfitting the test data)

→ Maybe **keeping the gradients** and only making the predictions binary after the ensemble would have been better(?)