
Recommender
System for Games
Elisa Klunder

Aksel Joonas Reedi

Mihkel Mariusz Jezierski

/A general overview: the ensemble

baseline
models

collaborative
filtering

content based
filtering

ensemble model = weighted average

user
average

game
average

content =
genre

content =
synopsis

model 1 model 2 model 3 model 4 model 5

matrix
factorization

/Insights about the data

1. Game ids and user ids were unnecessarily long and ended up in "Out
Of Memory" errors

↪ Encoded the ids to be from 0 to n-1

2. Appids in game_metadata were “objects” while in train they were
ints

↪ Cast the appids in game_metadata as ints

3. Two rows were problematic and prevented encoding/fitting models
↪ Dropped those two rows

/Model 3: Collaborative filtering

What we did: → Matrix Factorization
 → Alternating Least Squares

Insights: → The model performed better with a bigger embedding
 dimension (we started with 64 and ended up with 512)

 → The model overfitted if we let it run for too many epochs
 (we ended up setting the epochs to 7)

Open questions: → Was there a way to implement collaborative filtering
 considering other user information to compute
 similarity?

/Model 4: Content based on genres
What we did: → Used one hot encoded columns relating to genre,

 category and other information (e.g. is_free)

Insights: → The model performed better if we included only the
 information of the “genre” columns, excluding “category”
 and any other information

 → The model overshot the likelihood of a user to upvote a
 game, so putting the threshold to 0.1 in the transformation
 from continuous to binary improved the model

Open questions: → The user embedding for every game was done by
 taking the mean of the “genre” columns, is there a
 better way? (we tried TF-IDF encoding but it didn’t
 seem to make it better)

/Model 5: Content based on game descriptions (BERT)
What we did: → Cleaned up text (e.g. HTML formatting)
 → Embedding of “short descriptions”, “long
 descriptions” and “reviews” using BERT tokenizer

 → Fitted a content-based model with the embeddings

Insights: → Between reviews, short descriptions, long descriptions, and
 a combination of all three, short descriptions worked the
 best

 → Stemming was unnecessary because BERT has its own
 simplification method

Open questions: → Is there a smarter way of obtaining embeddings
 than just taking the mean of the elements of the
 vector?

/Ensamble

What we did: → Weighted average of the binary predictions

Insights: → Getting the most accurate weights is not trivial:
- using logistic regression with a val set didn’t work well
- using random search on the weights worked better
- we obtained the best results by fine tuning the

parameters by hand

Open questions: → We also tried to make predictions on an ensemble of
 enable predictions and it obtained the highest
 score (most probably overfitting the test data)
 → Maybe keeping the gradients and only making the
 predictions binary after the ensemble would have
 been better(?)

