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/Insights about the data

1. Game ids and user ids were unnecessarily long and ended up in "Out 
Of Memory" errors

↪ Encoded the ids to be from 0 to n-1

2. Appids in game_metadata were “objects” while in train they were 
ints

↪ Cast the appids in game_metadata as ints

3. Two rows were problematic and prevented encoding/fitting models
↪ Dropped those two rows



/Model 3: Collaborative filtering

What we did:     → Matrix Factorization 
      → Alternating Least Squares

Insights:    → The model performed better with a bigger embedding 
  dimension (we started with 64 and ended up with 512)

     → The model overfitted if we let it run for too many epochs 
         (we ended up setting the epochs to 7)

Open questions:  → Was there a way to implement collaborative filtering 
      considering other user information to compute 
      similarity? 



/Model 4: Content based on genres
What we did:     → Used one hot encoded columns relating to genre, 

           category and other information (e.g. is_free)

Insights:    → The model performed better if we included only the 
                      information of the “genre” columns, excluding “category” 
                         and any other information

     → The model overshot the likelihood of a user to upvote a 
          game, so putting the threshold to 0.1 in the transformation 
          from continuous to binary improved the model

Open questions:  → The user embedding for every game was done by 
                                     taking the mean of the “genre” columns, is there a 
                                     better way? (we tried TF-IDF encoding but it didn’t 
                                     seem to make it better)



/Model 5: Content based on game descriptions (BERT)
What we did:     → Cleaned up text (e.g. HTML formatting)
                             → Embedding of “short descriptions”, “long 
                                  descriptions” and “reviews” using BERT tokenizer 

      → Fitted a content-based model with the embeddings
      

Insights:    → Between reviews, short descriptions, long descriptions, and 
                         a combination of all three, short descriptions worked the 
                      best

     → Stemming was unnecessary because BERT has its own   
          simplification method 

Open questions:  → Is there a smarter way of obtaining embeddings 
                                    than just taking the mean of the elements of the 
                                    vector?



/Ensamble

What we did:     → Weighted average of the binary predictions
             

Insights:    → Getting the most accurate weights is not trivial:
- using logistic regression with a val set didn’t work well
- using random search on the weights worked better
- we obtained the best results by fine tuning the 

parameters by hand

Open questions:  → We also tried to make predictions on an ensemble of 
                                enable predictions and it obtained the highest 
                                     score (most probably overfitting the test data)
                                → Maybe keeping the gradients and only making the 
                                     predictions binary after the ensemble would have 
                                     been better(?)


