

Vector databases: The what, why & how

JP Hwang Educator

Agenda

- What is a vector database?
 - What are vectors?
 - Differences vs "traditional" DBs
- Why use a vector database?
- How do vector DBs work?
- Demos

Demo: A vector DB-driven app

Vector databases

Vector databases

Store data:

- For products, customers, financial...
- In text, images, videos...

Store data:

- For products, customers, financial...
- In text, images, videos...

Typically allow:

- Data management (create, read, update, delete)
- Search & (fast) retrieval

Store data:

- For products, customers, financial...
- In text, images, videos...

Typically allow:

- Data management (create, read, update, delete)
- Search & (fast) retrieval

At scale (millions / billions of objects)

Established technology

- SQL / Relational DBs: ~50 years
- Library catalogues: rudimentary databases
 - Library of Alexandria (~300BCE)

ORACLE[®] D A T A B A S E

PostgreSQL

MySQL

Established technology

- SQL / Relational DBs: ~50 years
- Library catalogues: rudimentary databases
- Solved technology?

Established technology

- SQL / Relational DBs: ~50 years
- Library catalogues: rudimentary databases
- Solved technology? No
 - New types of DBs with new features / focusses

Established technology

- SQL / Relational DBs: ~50 years
- Library catalogues: rudimentary databases
- Solved technology? No
 - \circ $\,$ New types of DBs with new features / focusses
 - Why? It's a hard problem!

Key challenge: Search speed

How long will this take?

•••

SELECT * FROM Hotels
WHERE Country='Netherlands';

Used by databases for speed

• e.g. Library catalogues

In databases:

- Catalogue data
- Speed up search & filtering

Most common type: "inverted index"

• Catalogued by **keywords**

L. B. Direct alphabetic index

1 Adams Ernest R.

Individual folder for active corresponence always in fourth position. Special classification guide always in fifth position.

Most common type: "inverted index"

- Catalogued by **keywords**
 - Actually, "tokens"

ting systems, 50–2	motor cycle engines, 6–7 valves, hydraulic, 33
nts, 27	design procedure, 15 ff.
strength, 59	design technique, 61
g points, 57	designing need for open mind in, 67
sation, 34–5, 73–4	resolution of conflicting inter- ests in, 66-71
context, 33-52	where to start, 3-14
sibility, 33	designs
arance, 33	age of, 52
33, 50	compromise in, 43-4
ility, 33, 37	determinate and indetermin-
frontier, 6	ate, 41-2
	11 11 1 1 M

INDEX

account ball-joit bending breakin

conden design acces appe cost, reliat

design

Most common type: "inverted index"

- Catalogued by keywords
 - Actually, "tokens"
- Allows fast keyword searches

INDEX

ccounting systems, 50-2	motor cycle engines, 6-7 valves, hydraulic, 33
all-joints, 27	design procedure, 15 ff.
ending strength, 59	design technique, 61
preaking points, 57	designing need for open mind in fo
ondensation, 34–5, 73–4	resolution of conflicting in ests in, 66-71
lesign context, 33-52	where to start, 3-14
accessibility, 33	designs
appearance, 33	age of, 52
cost, 33, 50	compromise in, 43-4
reliability, 33, 37	determinate and indeterm
lesign frontier, 6	ate, 41-2

(Another) Key challenge: Search quality

What are the limitations of this approach?

How would you cover:

- Typos?
- Synonyms?
- Translations?

•••

SELECT * FROM Hotels
WHERE Country='Netherlands';

Vector databases

A vector is a set of numbers

Like

[1, 0]

or

[0.513, 0.155, 0.983, 0.001, 0.932]

or

[0.0009420722, 0.020158706, -0.03939992, -0.025480185, 0.018441677, 0.0023035712, -0.012281344, -0.025270471, -0.056622636, ...]

In vector DBs, they're used to represent meaning.

Numbers represent meaning?

Yes! Here's an example.

RGB *numbers* represent *colors*, like: (255, 0, 0) = red (80, 200, 120) = emerald.

Each number is a *dial* for (red, green, blue) ness.

Now extend this concept...

To hundreds, or even thousands of these dials.

That's how vectors represent meaning.

Example

• "Three people rescued off Australian coast after yacht damaged by multiple shark attacks"

Vector

[-0.01670855, -0.02290458, 0.01024679, ..., -0.01840662, -0.01677336, 0.00040852]

Examples

- "Three people rescued off Australian coast after yacht damaged by multiple shark attacks"
- "Tourists taking selfies and feeding dingoes blamed for rise in K'gari attacks"
- "Sam Kerr: Chelsea striker and Matildas captain named runner-up in Uefa's player of the year awards"
- "'She's brilliant': Mary Earps inspires girls to pick up goalkeeper gloves"

Vectors

[-0.01670855, -0.02290458, 0.01024679, ..., -0.01840662, -0.01677336, 0.00040852]

[-0.01062017, 0.01388064, 0.02811302, ..., -0.01565292, 0.00282415, -0.01064047]

[-0.00067538, -0.00483041, 0.02590884, ..., -0.01845455, -0.01025612, -0.00987435]

[-0.03254206, 0.00462641, 0.00465651, ..., 0.01225011, -0.00032469, -0.01669922]

Examples

- "Three people rescued off Australian coast after yacht damaged by multiple shark attacks"
- "Tourists taking selfies and feeding dingoes blamed for rise in K'gari attacks"
- "Sam Kerr: Chelsea striker and Matildas captain named runner-up in Uefa's player of the year awards"
- "'She's brilliant': Mary Earps inspires girls to pick up goalkeeper gloves"

Similarity matrix

What is a **Vector?**

Vector embeddings:

- Text organised by vectors ⇒
- Text with similar meaning are next to each other

What is a **Vector?**

Vector embeddings:

- Text organised by vectors ⇒
- Text with similar meaning are next to each other
- "Al" (deep learning) models convert data to vectors

What is a **Vector?**

Vector embeddings:

- Text organised by vectors ⇒
- Text with similar meaning are next to each other
- "Al" (deep learning) models convert data to vectors
- Enables vector search

This the key to modern language models

Vector databases like Weaviate uses vectors to:

- Represent the meaning of objects
- Search for similar objects
- Transform objects

And the same core technology is used in LLMs
Vector databases have

a vector index

Vector databases

Vector index:

- Organised catalogue of data (index)
- By meaning (vector / vector embedding)

Vector databases

Vector index:

- Organised catalogue of data (index)
- By meaning (vector / vector embedding)
- Allows fast similarity searches

ANN indexing

Enables scalable search up to billions of vectors.

Vector index ≠ Vector database

A database **houses and manages** collections of data.

An index **improves** the speed of data retrieval.

(A catalog is not a library.)

Typical Vector DB workflow

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

Most similar to "puppy"

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

E.g. Products where "vacuum" <u>most relevant</u>

INDEX	
accounting systems, 50–2	motor cycle engines, 6-7
hall-joints 27	design procedure 15 ff
bending strength so	design technique 61
breaking points, 57	designing need for open mind in, 67
condensation, 34–5, 73–4	resolution of conflicting inter- ests in, 66-71
design context, 33-52	where to start, 3-14
accessibility, 33	designs
appearance, 33	age of, 52
cost, 33, 50	compromise in, 43-4
reliability, 33, 37	determinate and indetermin-
design frontier, 6	ate, 41-2

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

Hybrid search for "vacuum"

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

E.g. <u>Only look</u> in products

made in the U.K.

Weaviate can perform

- Vector searches
- Keyword searches
- Hybrid searches
- (+ Filtering)

E.g. <u>Only look</u> in products made in the U.K. <u>Most similar</u> to "automatic vacuum"

Demo: Searches

Where do embeddings come from?

Conceptual diagram - object import process

Objects → **Embeddings**

Vectorizer models translate data into vectors.

Hundreds of models are available:

- Proprietary models @ Cohere, OpenAI, Google, AWS, etc.
- **Open-source** models from Hugging Face

Objects → **Embeddings**

Vectorizer models translate data into vectors.

Hundreds of models are available:

- Proprietary models @ Cohere, OpenAI, Google, AWS, etc.
- **Open-source** models from Hugging Face
- Why so many?

(Some) Significant models

- Word2Vec (2013)
- GloVe (Global Vectors for Word Representation) (2014)
- FastText (2016)
- ELMo (Embeddings from Language Models) (2018)
- BERT (Bidirectional Encoder Representations from Transformers) (2018)
- RoBERTa (Robustly Optimized BERT Pretraining Approach) (2019)
- DistilBERT (2019)
- T5 (Text-To-Text Transfer Transformer) (2019)
- CLIP (Contrastive Language–Image Pretraining) (2020)
- DeBERTa (Decoding-enhanced BERT with Disentangled Attention) (2020)
- Sentence-BERT (SBERT) (2020)
- Ada-002 (2021)
- Embed-multilingual-v2.0 (2022)
- ImageBind (2023)

Word2Vec (2023)

- Convert individual words into vectors.
- Popularised vector maths:

Word2Vec (2013)

- Convert individual words into vectors.
- Popularised vector maths:

(Figure: Jay Alammar blog)

king — man + woman ~= queen

Bert (2018)

- One of the first successful "transformer" architecture implementations.
- Context-aware embeddings

Bert (2018)

- One of the first successful "transformer" architecture implementations.
- Context-aware embeddings
 - (River) bank ≠ bank (heist)

CLIP (2020)

• A multi-modal model (image & text)

CLIP (2020)

- A multi-modal model (image & text)
 - Search images with text & vice versa

Cohere multilingual (2022)

• A multilingual model

Cohere multilingual (2022)

- A multilingual model
 - ~100 languages supported

(Some) Significant models

- Word2Vec (2013)
- GloVe (Global Vectors for Word Representation) (2014)
- FastText (2016)
- ELMo (Embeddings from Language Models) (2018)
- **BERT** (Bidirectional Encoder Representations from Transformers) (2018)
- RoBERTa (Robustly Optimized BERT Pretraining Approach) (2019)
- DistilBERT (2019)
- T5 (Text-To-Text Transfer Transformer) (2019)
- **CLIP** (Contrastive Language–Image Pretraining) (2020)
- DeBERTa (Decoding-enhanced BERT with Disentangled Attention) (2020)
- Sentence-BERT (SBERT) (2020)
- Ada-002 (2021)
- Embed-multilingual-v2.0 (2022)
- ImageBind (2023)

Why vector searches

"To get good results, you shouldn't need to know any magic words. With semantic search, you don't."

- David Haney, David Gibson Stackoverflow Blog

Are great because they can:

- Be **robust** to synonyms, word forms & typos
 - Space vs. intergalactic
 - Puppy vs puppies vs puppies

Are great because they can:

- Be **robust** to synonyms, word forms & typos
- Work across languages
 - Puppies vs chiot vs 강아지

Are great because they can:

- Be **robust** to synonyms, word forms & typos
- Work across languages
- Work across modalities
 - Puppies vs chiot vs 강아지 vs

Are powered by models that generate vectors:

- **Robustly** to synonyms, word forms & typos
- Across languages
- Across modalities
 - Puppies vs chiot vs 강아지 vs

Are powered by models that generate vectors:

This is why vector DBs are "Al-native".

Retrieval augmented generation

A vector search pipeline

Vector search + LLM

Retrieval augmented generation

Retrieval augmented generation

- Retrieves data
- Sends the data+prompt to an LLM
- Serves data + LLM response

(Some of the served outputs are not in the DB!)

- Extract text from source data
- Chunk text
- Add it to Weaviate
- Query with prompt

• Extract text

•••

```
def download_and_parse_pdf(pdf_url: str) → str:
    """
    Get the text from a PDF and parse it
    :param pdf_url:
    :return:
    """
    # Send a GET request to the URL
    response = requests.get(pdf_url)
```

```
# Create a file-like object from the content of the response
pdf_file = BytesIO(response.content)
pdf_reader = PdfReader(pdf_file)
```

Initialize a string to store the text content
pdf_text = ""
n_pages = len(pdf_reader.pages)

```
# Iterate through the pages and extract the text
for page_num in range(n_pages):
    page = pdf_reader.pages[page_num]
    pdf_text += "\n" + page.extract_text()
return pdf_text
```


• Chunk text

•••

```
def chunk_text_by_num_words(source_text: str, max_chunk_words: int = 200) → List[str]:
    """
    Chunk text input into a list of strings, using a number of words
    :param source_text: Input string to be chunked
    :param max_chunk_words: Maximum length of chunk, in words
    :return: return a list of words
    """
```

```
sep = " "
```

```
source_text = source_text.strip()
word_list = source_text.split(sep)
chunks_list = list()
```

```
n_chunks = ((len(word_list) - 1) // max_chunk_words) + 1
for i in range(n_chunks):
    window_words = word_list[
        max(max_chunk_words * i - overlap_words, 0):
        max_chunk_words * (i + 1)
        ]
        chunks_list.append(sep.join(window_words))
```

```
return chunks_list
```


1

• Import chunks

•••

```
chunks: List[str], source_object_data: SourceData,
   category: str = '',
   chunk_number_offset: int = 0):
Import text chunks via batch import process
:param chunks:
:param source_object_data:
:param category: Category of the source object (e.g. arxiv)
:param chunk_number_offset:
:return:
counter = 0
self.client.batch.configure(batch_size=100)
with self.client.batch as batch:
    for i, chunk_text in enumerate(chunks):
        chunk object = ChunkData(
       batch.add data object(
           class_name=self.chunk_class,
           data object=asdict(chunk object),
           uuid=generate_uuid5(asdict(chunk_object))
       counter += 1
return counter
```


• Perform queries

client: Client, class_name: str, class_properties: List[str], prompt: str, search_query: str, object_path: str, limit: int = N_RAG_CHUNKS Perform a search and then a generative task on those search results For specific tasks that should be paired with a search (e.g. what does video AA say about topic BB?) where_filter = { "path": ["source_path"], "operator": "Equal", "valueText": object_path response = (client.query .get(class_name, class_properties) .with_where(where_filter) .with_near_text({'concepts': [search_query]}) .with_generate(grouped_task=prompt) .with limit(limit) 'path': ['chunk_number'], 'order': 'asc' .do() return parse_generative_response(response, class_name)

Search vs RAG workflow

A good search is key for a good RAG system.

How to get started with vector db / RAG

- Weaviate Cloud Services sandbox (free)
- Quickstart document
- Choose an API vectorizer
 - (e.g. Cohere / OpenAI / HuggingFace)
- Choose a LLM (e.g. Cohere / OpenAI)
- Have fun!