GAPC 2023

Solutions presentation

May 7, 2023

D: Discrete Structures

Problem Author: Wietze Koops and Franciszek Szewczyk

- Problem: Compute the final grade from the sum of its components.

D: Discrete Structures

Problem Author: Wietze Koops and Franciszek Szewczyk

- Problem: Compute the final grade from the sum of its components.
- Two best essays are each multiplied by 0.15

D: Discrete Structures

Problem Author: Wietze Koops and Franciszek Szewczyk

- Problem: Compute the final grade from the sum of its components.
- Two best essays are each multiplied by 0.15
- The midterm is multiplied by 0.2

D: Discrete Structures

Problem Author: Wietze Koops and Franciszek Szewczyk

- Problem: Compute the final grade from the sum of its components.
- Two best essays are each multiplied by 0.15
- The midterm is multiplied by 0.2
- The final exam is multiplied by 0.5

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- Problem: What's the expected number of hit coasters?

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- We know that Majki's throws are uniformly distributed on the board.

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- We know that Majki's throws are uniformly distributed on the board.
- Then probability of hitting a coaster $P($ hit $)$ is just the fraction of the board covered by coasters.

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- We know that Majki's throws are uniformly distributed on the board.
- Then probability of hitting a coaster $P($ hit $)$ is just the fraction of the board covered by coasters.
- Expected amount of hits is $P($ hit $) \cdot n$

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- We know that Majki's throws are uniformly distributed on the board.
- Then probability of hitting a coaster $P($ hit $)$ is just the fraction of the board covered by coasters.
- Expected amount of hits is $P($ hit $) \cdot n$
- If you enjoy pretty symbols: $\frac{\sum_{i=1}^{n} \pi \cdot r_{i}^{2}}{s^{2}} \cdot n$

A: A Rod in a Dot

Problem Author: Franciszek Szewczyk

- We know that Majki's throws are uniformly distributed on the board.
- Then probability of hitting a coaster $P($ hit $)$ is just the fraction of the board covered by coasters.
- Expected amount of hits is $P($ hit $) \cdot n$
- If you enjoy pretty symbols: $\frac{\sum_{i=1}^{n} \pi \cdot r_{i}^{2}}{s^{2}} \cdot n$
- Watch out for overflows

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or " z ", to avoid accessing outside of the string.

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or "z", to avoid accessing outside of the string.
- For the rest of the "\#", convert the neighbors into integers ((ord()) in Python).

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or "z", to avoid accessing outside of the string.
- For the rest of the "\#", convert the neighbors into integers ((ord()) in Python).
- Find the number between the two (and floor if not an integer).

I: International Interpolation
Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or "z", to avoid accessing outside of the string.
- For the rest of the "\#", convert the neighbors into integers ((ord()) in Python).
- Find the number between the two (and floor if not an integer).
- Find the corresponding character in the alphabet (chr() in Python).

I: International Interpolation

Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or "z", to avoid accessing outside of the string.
- For the rest of the "\#", convert the neighbors into integers ((ord()) in Python).
- Find the number between the two (and floor if not an integer).
- Find the corresponding character in the alphabet (chr() in Python).
- Replace "\#" by the new character in the string (in Python immutable, convert to list first).

I: International Interpolation

Problem Author: Michal Te\#nar

- Problem: Replace "\#" characters in a string to be (alphabetically) between the characters around. If there are two "\#" in a row, output impossible.
- First linearly search the strings to see if there are two "\#", if yes, print "impossible" and break.
- Resolve "\#" at the start and the end of a word by replacing it by "a" or "z", to avoid accessing outside of the string.
- For the rest of the "\#", convert the neighbors into integers ((ord()) in Python).
- Find the number between the two (and floor if not an integer).
- Find the corresponding character in the alphabet (chr() in Python).
- Replace "\#" by the new character in the string (in Python immutable, convert to list first).
- Clarification: If length is 1 and the only character is "\#", then the answer is "a".

H: Hasty Guesses

Problem Author: Maarten Sijm and Wojtek Trejter

- Problem: Find the second closest distinct number to a given target.

H: Hasty Guesses

Problem Author: Maarten Sijm and Wojtek Trejter

- Problem: Find the second closest distinct number to a given target.
- Solution:

H: Hasty Guesses

Problem Author: Maarten Sijm and Wojtek Trejter

- Problem: Find the second closest distinct number to a given target.
- Solution:
- Keep track of the first and second closest numbers.

H: Hasty Guesses

Problem Author: Maarten Sijm and Wojtek Trejter

- Problem: Find the second closest distinct number to a given target.
- Solution:
- Keep track of the first and second closest numbers.
- Iterate throught the input, comparing the newly encountered number to the current first and second closest numbers

H: Hasty Guesses

Problem Author: Maarten Sijm and Wojtek Trejter

- Problem: Find the second closest distinct number to a given target.
- Solution:
- Keep track of the first and second closest numbers.
- Iterate throught the input, comparing the newly encountered number to the current first and second closest numbers
- Slower solution: Since $n \leq 10^{5}$, it is also possible to create a set of numbers from the input, sort it by the absolute value to the target number, and print the second number from the set.

F: Flatland Zoo

Problem Author: Anton Chernev and Vitor Greati

- Problem: Compute the number of square hits in a traversal of a $m \times n$ rectangular grid from the bottom-left corner to the top-right corner.

| |
| :--- | :--- |
| |

F: Flatland Zoo

Problem Author: Anton Chernev and Vitor Greati

- Problem: Compute the number of square hits in a traversal of a $m \times n$ rectangular grid from the bottom-left corner to the top-right corner.

- Solution: The first square is always counted, and whenever Jimmy crosses a line of the grid, he enters a new square. There are $(m-1)+(n-1)$ lines to cross in this path, plus the first square, so $m+n-1$ in principle.
However, when he crosses a vertex, he enters a new square, but then two lines will not be crossed. So, the answer is $m+n-1+N_{\text {vertices }}-2 N_{\text {vertices }}=m+n-1-N_{\text {vertices }}$.

F: Flatland Zoo

Problem Author: Anton Chernev and Vitor Greati

- Problem: Compute the number of square hits in a traversal of a $m \times n$ rectangular grid from the bottom-left corner to the top-right corner.

- Solution: The first square is always counted, and whenever Jimmy crosses a line of the grid, he enters a new square. There are $(m-1)+(n-1)$ lines to cross in this path, plus the first square, so $m+n-1$ in principle.
However, when he crosses a vertex, he enters a new square, but then two lines will not be crossed.
So, the answer is $m+n-1+N_{\text {vertices }}-2 N_{\text {vertices }}=m+n-1-N_{\text {vertices }}$. But how to compute N vertices?
- A vertex is a pair of integers (x, y) such that $\frac{x}{y}=\frac{m}{n}$.
- Note that $\frac{m}{n}=\frac{\operatorname{gcd}(m, n) \cdot m^{\prime}}{\operatorname{gcd}(m, n) \cdot n^{\prime}}$.
- Thus, the vertices to cross are $\left(1 \cdot m^{\prime}, 1 \cdot n^{\prime}\right), \ldots,\left((\operatorname{gcd}(m, n)-1) \cdot m^{\prime},(\operatorname{gcd}(m, n)-1) \cdot n^{\prime}\right)$.

F: Flatland Zoo

Problem Author: Anton Chernev and Vitor Greati

- Problem: Compute the number of square hits in a traversal of a $m \times n$ rectangular grid from the bottom-left corner to the top-right corner.

- Solution: The first square is always counted, and whenever Jimmy crosses a line of the grid, he enters a new square. There are $(m-1)+(n-1)$ lines to cross in this path, plus the first square, so $m+n-1$ in principle.
However, when he crosses a vertex, he enters a new square, but then two lines will not be crossed.
So, the answer is $m+n-1+N_{\text {vertices }}-2 N_{\text {vertices }}=m+n-1-N_{\text {vertices }}$. But how to compute

N vertices?

- A vertex is a pair of integers (x, y) such that $\frac{x}{y}=\frac{m}{n}$.
- Note that $\frac{m}{n}=\frac{\mathrm{gcd}(m, n) \cdot m^{\prime}}{\operatorname{gcd}(m, n) \cdot n^{\prime}}$.
- Thus, the vertices to cross are $\left(1 \cdot m^{\prime}, 1 \cdot n^{\prime}\right), \ldots,\left((\operatorname{gcd}(m, n)-1) \cdot m^{\prime},(\operatorname{gcd}(m, n)-1) \cdot n^{\prime}\right)$.

The number of square hits is, then, $m+n-1-N_{\text {vertices }}=m+n-\operatorname{gcd}(m, n)$.
Then just output $m+n-\operatorname{gcd}(m, n)$. Complexity: $\mathcal{O}(\log (\min (m, n)))$.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.
- Treat each entry as two events: when order is started to be prepared, 1 more worker is needed, when order stops being prepared, 1 less worker is needed.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.
- Treat each entry as two events: when order is started to be prepared, 1 more worker is needed, when order stops being prepared, 1 less worker is needed.
- End of order has timestamp $a-c$, start of order has timestamp $a-b-c$.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.
- Treat each entry as two events: when order is started to be prepared, 1 more worker is needed, when order stops being prepared, 1 less worker is needed.
- End of order has timestamp $a-c$, start of order has timestamp $a-b-c$.
- Sort the events by time, linearly go through them and keep count:
- +1 when order arrives,
- -1 when order is finished.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.
- Treat each entry as two events: when order is started to be prepared, 1 more worker is needed, when order stops being prepared, 1 less worker is needed.
- End of order has timestamp $a-c$, start of order has timestamp $a-b-c$.
- Sort the events by time, linearly go through them and keep count:
- +1 when order arrives,
- -1 when order is finished.
- In the end, output maximum value of counter as the answer.

J: Just in Time

Problem Author: Michal Tešnar

- Problem: Figure out how many overlaps are there between delayed orders.
- Clarification: The workers do not need to deliver the order.
- Treat each entry as two events: when order is started to be prepared, 1 more worker is needed, when order stops being prepared, 1 less worker is needed.
- End of order has timestamp $a-c$, start of order has timestamp $a-b-c$.
- Sort the events by time, linearly go through them and keep count:
- +1 when order arrives,
- -1 when order is finished.
- In the end, output maximum value of counter as the answer.
- Complexity $\mathcal{O}(2 n \log (2 n)+2 n)=\mathcal{O}(n \log (n))$.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.
- Otherwise, 1 is definitely not a center and 2 becomes our potential candidate.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.
- Otherwise, 1 is definitely not a center and 2 becomes our potential candidate.
- Next, we check whether our current center candidate sees 3. If it does, it keeps being our center candidate.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.
- Otherwise, 1 is definitely not a center and 2 becomes our potential candidate.
- Next, we check whether our current center candidate sees 3. If it does, it keeps being our center candidate.
- Otherwise, 3 becomes our center candidate. We continue in the same way with $4,5, \ldots$.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.
- Otherwise, 1 is definitely not a center and 2 becomes our potential candidate.
- Next, we check whether our current center candidate sees 3. If it does, it keeps being our center candidate.
- Otherwise, 3 becomes our center candidate. We continue in the same way with $4,5, \ldots$.
- At the end, we have a center candidate v and we know that either v is a center or no center exists.

G: Gruesome CAPTCHAs

Problem Author: Anton Chernev and Wojtek Trejter

- Problem: Determine for q queries whether there is a graph centre with n nodes.
- Naive solution: For every node check whether it is connected to all other nodes. $\mathcal{O}\left(n^{2} q\right)$ is too slow!
- Instead, we start with node 1 , which is our centre candidate.
- If 1 sees 2 , then 1 is still a potential candidate and 2 is definitely not a center.
- Otherwise, 1 is definitely not a center and 2 becomes our potential candidate.
- Next, we check whether our current center candidate sees 3. If it does, it keeps being our center candidate.
- Otherwise, 3 becomes our center candidate. We continue in the same way with $4,5, \ldots$.
- At the end, we have a center candidate v and we know that either v is a center or no center exists.
- Then we can run again through all vertices and check whether v sees them. Overall, we needed $\mathcal{O}(n)$ operations per query, so the overall complexity is $\mathcal{O}(e+n q)$.

C: Cutting Cake

Problem Author: Wietze Koops

- Problem: Compute the minimum number of cuts that needs to be made to cut a rectangular cake in at least k equal pieces, such that each piece is at most $s \%$ smaller than when cutting the cake in exactly k equal pieces.

C: Cutting Cake

Problem Author: Wietze Koops

- Problem: Compute the minimum number of cuts that needs to be made to cut a rectangular cake in at least k equal pieces, such that each piece is at most $s \%$ smaller than when cutting the cake in exactly k equal pieces.
- Naive solution (too slow): Try all possible number of pieces in $\left[k,\left\lfloor\frac{k}{1-s \%}\right\rfloor\right]$. For a fixed number of pieces, try all divisors up to \sqrt{k}.

C: Cutting Cake

Problem Author: Wietze Koops

- Problem: Compute the minimum number of cuts that needs to be made to cut a rectangular cake in at least k equal pieces, such that each piece is at most $s \%$ smaller than when cutting the cake in exactly k equal pieces.
- Naive solution (too slow): Try all possible number of pieces in $\left[k,\left\lfloor\frac{k}{1-s \%}\right\rfloor\right]$. For a fixed number of pieces, try all divisors up to \sqrt{k}.
- Faster solution: Assume we make at least as many horizontal as vertical cuts. Try all $\lceil\sqrt{k}\rceil$ possible values for the number v of vertical cuts. Then we need $h=\left\lceil\frac{k}{v}\right\rceil$ horizontal cuts. Take the minimum value of $h+v$ that does not give too many pieces.

C: Cutting Cake

Problem Author: Wietze Koops

- Problem: Compute the minimum number of cuts that needs to be made to cut a rectangular cake in at least k equal pieces, such that each piece is at most $s \%$ smaller than when cutting the cake in exactly k equal pieces.
- Naive solution (too slow): Try all possible number of pieces in $\left[k,\left\lfloor\frac{k}{1-s \%}\right\rfloor\right]$. For a fixed number of pieces, try all divisors up to \sqrt{k}.
- Faster solution: Assume we make at least as many horizontal as vertical cuts. Try all $\lceil\sqrt{k}\rceil$ possible values for the number v of vertical cuts. Then we need $h=\left\lceil\frac{k}{v}\right\rceil$ horizontal cuts. Take the minimum value of $h+v$ that does not give too many pieces.
- Even faster: Without the constraint that each piece is at most $s \%$ smaller, the answer is always cutting the cake in $\lfloor\sqrt{k}\rfloor \times\lceil\sqrt{k}\rceil$ or $\lceil\sqrt{k}\rceil \times\lceil\sqrt{k}\rceil$ pieces. This needs at most \sqrt{k} additional pieces. If $s>0$, then this is possible for $k>10000$.

E: Epic Party on a Boat

Problem Author: Wietze Koops

- Problem: Find the optimal worst-case cost of guessing a number between 1 and n, given that the cost of guessing k is k.

E: Epic Party on a Boat

Problem Author: Wietze Koops

- Problem: Find the optimal worst-case cost of guessing a number between 1 and n, given that the cost of guessing k is k.
- Dynamic Programming: for all $0 \leq a \leq b \leq n$, find the optimal worst-case cost $c[a][b]$ of guessing a number in the half-open interval $(a, b]$ given that the cost of guessing k is k.

E: Epic Party on a Boat

Problem Author: Wietze Koops

- Problem: Find the optimal worst-case cost of guessing a number between 1 and n, given that the cost of guessing k is k.
- Dynamic Programming: for all $0 \leq a \leq b \leq n$, find the optimal worst-case cost $c[a][b]$ of guessing a number in the half-open interval $(a, b]$ given that the cost of guessing k is k.
- Compute the $c[a][b]$ in increasing order of the length $b-a$ of the interval.

E: Epic Party on a Boat

Problem Author: Wietze Koops

- Problem: Find the optimal worst-case cost of guessing a number between 1 and n, given that the cost of guessing k is k.
- Dynamic Programming: for all $0 \leq a \leq b \leq n$, find the optimal worst-case cost $c[a][b]$ of guessing a number in the half-open interval $(a, b]$ given that the cost of guessing k is k.
- Compute the $c[a][b]$ in increasing order of the length $b-a$ of the interval.
- Then $c[a][a]=0$ (since the interval is empty) and

$$
c[a][b]=\min _{a<k \leq b}[k+\max \{c[a][k-1], c[k][b]\}] .
$$

E: Epic Party on a Boat

Problem Author: Wietze Koops

- Problem: Find the optimal worst-case cost of guessing a number between 1 and n, given that the cost of guessing k is k.
- Dynamic Programming: for all $0 \leq a \leq b \leq n$, find the optimal worst-case cost $c[a][b]$ of guessing a number in the half-open interval $(a, b]$ given that the cost of guessing k is k.
- Compute the $c[a][b]$ in increasing order of the length $b-a$ of the interval.
- Then $c[a][a]=0$ (since the interval is empty) and

$$
c[a][b]=\min _{a<k \leq b}[k+\max \{c[a][k-1], c[k][b]\}] .
$$

- The answer is $c[0][n]$.

B: Binary Speakers

Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?

B: Binary Speakers

Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?
- Solution:

A binary function g is x-preserving if $g(x, \ldots, x)=x$, for each $x \in\{0,1\}$. Observe that s and all the other functions in the examples are both 0 -preserving and 1-preserving.

B: Binary Speakers

Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?
- Solution:

A binary function g is x-preserving if $g(x, \ldots, x)=x$, for each $x \in\{0,1\}$. Observe that s and all the other functions in the examples are both 0 -preserving and 1-preserving.

B: Binary Speakers
Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?
- Solution:

A binary function g is x-preserving if $g(x, \ldots, x)=x$, for each $x \in\{0,1\}$. Observe that s and all the other functions in the examples are both 0 -preserving and 1-preserving.

This implies that projections and s cannot break this property when combined via superposition. Indeed, Mister Bin understands a function if and only if this function is 0 - and 1-preserving.

B: Binary Speakers
Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?
- Solution:

A binary function g is x-preserving if $g(x, \ldots, x)=x$, for each $x \in\{0,1\}$. Observe that s and all the other functions in the examples are both 0 -preserving and 1-preserving.

This implies that projections and s cannot break this property when combined via superposition.
Indeed, Mister Bin understands a function if and only if this function is 0 - and 1-preserving.
That is, checking whether the function is expressible or not is $O(1)$, good for the no cases.

B: Binary Speakers

Problem Author: Vitor Greati

Mister Bin understands someone from region R if he can express in his language (using only projections, s and superposition) the basic functions taught in R.

- Problem: Given $f:\{0,1\}^{k} \rightarrow\{0,1\}$, is f generated from projections and s by superposition?
- Solution:

A binary function g is x-preserving if $g(x, \ldots, x)=x$, for each $x \in\{0,1\}$. Observe that s and all the other functions in the examples are both 0 -preserving and 1-preserving.

This implies that projections and s cannot break this property when combined via superposition.
Indeed, Mister Bin understands a function if and only if this function is 0 - and 1-preserving.
That is, checking whether the function is expressible or not is $O(1)$, good for the no cases.
Of course, generating an expression for an expressible function demands more work. Observe however that s is a ternary conditional operator, and this will help a lot:
$s(a, b, c)$ is b if $a=1$ and is c otherwise.

B: Binary Speakers

Problem Author: Vitor Greati

First, the intuition. What happens if we pick a 3-ary f and fix its third argument? Look:

B: Binary Speakers

Problem Author: Vitor Greati

First, the intuition. What happens if we pick a 3-ary f and fix its third argument? Look:

x	y	z	$f(x, y, z)$									
0	0	0	0									
0	0	1	0		x	y	z	$F_{0}(x, y, 0)$	x	y	z	$F_{1}(x, y, 1)$
0	1	0	1		0	0	0	0	0	0	1	0
0	1	1	1	\rightarrow	0	1	0	1	0	1	1	1
1	0	0	1		1	0	0	1	1	0	1	0
1	0	1	0		1	1	0	0	1	1	1	1
1	1	0	0									
1	1	1	1									

B: Binary Speakers

Problem Author: Vitor Greati

First, the intuition. What happens if we pick a 3-ary f and fix its third argument? Look:

x	y	z	$f(x, y, z)$									
0	0	0	0									
0	0	1	0		x	y	z	$F_{0}(x, y, 0)$	x	y	z	$F_{1}(x, y, 1)$
0	1	0	1		0	0	0	0	0	0	1	0
0	1	1	1	\rightarrow	0	1	0	1	0	1	1	1
1	0	0	1		1	0	0	1	1	0	1	0
1	0	1	0		1	1	0	0	1	1	1	1
1	1	0	0									
1	1	1	1									

Then:

$$
f(x, y, z)= \begin{cases}F_{0}(x, y, 0) & \text { if } z=0 \\ F_{1}(x, y, 1) & \text { otherwise }\end{cases}
$$

B: Binary Speakers

First, the intuition. What happens if we pick a 3-ary f and fix its third argument? Look:

x	y	z	$f(x, y, z)$									
0	0	0	0									
0	0	1	0		x	y	z	$F_{0}(x, y, 0)$	x	y	z	$F_{1}(x, y, 1)$
0	1	0	1		0	0	0	0	0	0	1	0
0	1	1	1	\rightarrow	0	1	0	1	0	1	1	1
1	0	0	1		1	0	0	1	1	0	1	0
1	0	1	0		1	1	0	0	1	1	1	1
1	1	0	0									
1	1	1	1									

Then:

$$
f(x, y, z)= \begin{cases}F_{0}(x, y, 0) & \text { if } z=0 \\ F_{1}(x, y, 1) & \text { otherwise }\end{cases}
$$

So, find F_{0} and F_{1} and combine them using s, which is an if-else!

B: Binary Speakers

Problem Author: Vitor Greati

The algorithm works by fixing suffixes in the arguments of the function, combining simpler functions to form more complex ones, until reaching f.

B: Binary Speakers

Problem Author: Vitor Greati

The algorithm works by fixing suffixes in the arguments of the function, combining simpler functions to form more complex ones, until reaching f.

For a suffix $b_{1}, \ldots, b_{k} \in\{0,1\}$ of length k, two cases:

- $f\left(b_{1}, \ldots, b_{k}\right)=0$: then at least one b_{i} is 0 , so the expression is just the $i^{\text {th }}$ projection.
- $f\left(b_{1}, \ldots, b_{k}\right)=1$: then at least one b_{i} is 1 , so the expression is just the $i^{\text {th }}$ projection.

B: Binary Speakers

Problem Author: Vitor Greati

The algorithm works by fixing suffixes in the arguments of the function, combining simpler functions to form more complex ones, until reaching f.

For a suffix $b_{1}, \ldots, b_{k} \in\{0,1\}$ of length k, two cases:

- $f\left(b_{1}, \ldots, b_{k}\right)=0$: then at least one b_{i} is 0 , so the expression is just the $i^{\text {th }}$ projection.
- $f\left(b_{1}, \ldots, b_{k}\right)=1$: then at least one b_{i} is 1 , so the expression is just the $i^{\text {th }}$ projection.

Recursively, assume we have expressions F_{0} and F_{1} for the fixed suffixes $0, b_{j+2}, \ldots, b_{k}$ and $1, b_{j+2}, \ldots, b_{k}$, that is, F_{z} is the expression for the function

$$
f_{z}\left(x_{1}, \ldots, x_{j}\right)=f\left(x_{1}, \ldots, x_{j}, z, b_{j+2}, \ldots, b_{k}\right)
$$

We then obtain an expression for the smaller fixed suffix b_{j+2}, \ldots, b_{k} :

$$
s\left(\mathrm{pi}(j+1)(x), F_{0}, F_{1}\right)
$$

B: Binary Speakers

Problem Author: Vitor Greati

The algorithm works by fixing suffixes in the arguments of the function, combining simpler functions to form more complex ones, until reaching f.

For a suffix $b_{1}, \ldots, b_{k} \in\{0,1\}$ of length k, two cases:

- $f\left(b_{1}, \ldots, b_{k}\right)=0$: then at least one b_{i} is 0 , so the expression is just the $i^{\text {th }}$ projection.
- $f\left(b_{1}, \ldots, b_{k}\right)=1$: then at least one b_{i} is 1 , so the expression is just the $i^{\text {th }}$ projection.

Recursively, assume we have expressions F_{0} and F_{1} for the fixed suffixes $0, b_{j+2}, \ldots, b_{k}$ and $1, b_{j+2}, \ldots, b_{k}$, that is, F_{z} is the expression for the function

$$
f_{z}\left(x_{1}, \ldots, x_{j}\right)=f\left(x_{1}, \ldots, x_{j}, z, b_{j+2}, \ldots, b_{k}\right)
$$

We then obtain an expression for the smaller fixed suffix b_{j+2}, \ldots, b_{k} :

$$
s\left(\operatorname{pi}(j+1)(x), F_{0}, F_{1}\right)
$$

Finally, the function f is just the case in which the length of the fixed suffix is 0 . Complexity: $\mathcal{O}\left(2^{k}\right)$.

